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Math 203 Spring 2013—Exam 4

Instructor: J. Shapiro

Work carefully and neatly and remember that I cannot grade what I cannot read. You
must show all relevant work in the appropriate space. You may receive no credit for a correct
answer if there is insufficient supporting work. Notes, books and programable calculators are

NOT ALLOWED.

(15pt] 1. Fill in the blanks with A(lways), S(ometimes), N(ever) so that the following are correct
statements.

(a) If Ais ?strl n X n matrix and u is a nonzero vector in R", such that Au = 5u, then 5
is an eigenvalue of A.

(b) If 5 is an eigenvalue of A and if B is similar to A, then 5 is A an eigenvalue
of B.

(c) If Ais a 3 x 3 matrix and 3 and 5 are the only eigenvalues of A, then Ais S
diagonalizable.

(d) If char(A) = (5 — z)%(3 — z), and the dimension of the eigenspace of 5 is one, then
Alis diagonalizable.

(e) Let T : R® — R™ be a linear transformation. Let A be the matrix of T with respect
to the %andard matrix and suppose that B is a matrix that is similar to A. Then
B represents the matrix of 7" with respect to some basis of R"™.

[15] 2. Find the characteristic polynomial, eigenvalues and a basis for each corresponding eigenspace
for the matrix below: -1
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(a) Find the eigenvalues of A and then find a diagonal matrlx 31m11ar to A.
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(b) Fmd an 1nvert1ble matrix P such that A = PDP™', where D is the matrix you
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[10] 5. Let T : P, — R? be defined by T(p) = (2p(1),p(—1),p(3)). Then T is a linear trans-
formation (you do not have to prove this). Find the matrix of T relative to the bases
{t?,t,1} (note the order) and the standard basis of R3.
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[10] 6. Let T : R®* — R? be the linear transformation given by T< y ) = ( 9% + dy ) Let

B= { ( } ) , ( L )} (so B is a basis of R?). Find the B-matrix for T.

T(1): (Z)= e(\)
T(a): (2)=3 (4

g°['\‘]\8= (3 §>

[10] 7. Let T : R® — R3 be a linear transformation, such that the matrix of T with respect to
the B = {by, by, b3} basis is
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8] 8. Let u = ( -5 ) and w = ( -4 ) Compute u - w and ||ulf?.
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